

Problems based on distance and displacement

Basic level

1.	A body moves 6 <i>m</i> north. 8	<i>m</i> east and 10 <i>m</i> vertically upward	s, what is its resultant displaceme	ent from initial position[DCE 2000]
	(a) $10\sqrt{2}m$	(b) 10 <i>m</i>	(c) $\frac{10}{\sqrt{2}}m$	(d) $10 \times 2m$
2.	An athlete completes one ro minutes 20 seconds	und of a circular track of radius <i>R</i>	in 40 seconds. What will be his c	lisplacement at the end of 2 [NCERT 1990]
	(a) Zero	(b) 2 <i>R</i>	(c) $2\pi R$	(d) 7 <i>πR</i>
3.	A boy stops after travelling of the boy is	3 <i>km</i> towards east and then goes	4 <i>km</i> towards north along a plan	e road. The resultant displacement
	(a) 7 <i>km</i>	(b) 4 <i>km</i>	(c) $5 km$	(d) 15 km
4.	If the displacement of a part	ticle is zero, then what can we say	about its distance covered	
	(a) It must be zero	(b) It cannot be zero	(c) It is negative	(d) It may or may not be zero
5.	The location of a particle ha	s changed. What can we say about	t the displacement and the distan	ce covered by the particle
	(a) Both cannot be zero		(b) One of the two may be z	ero
	(c) Both must be zero		(d) If one is positive, the oth	ner is negative and vice versa
	Advance level			
6.	A particle moves along a cire	cular arc of radius R making an ar	ngle of θ at centre. The magnitud	e of displacement is
	(a) $2R\sin\theta/2$	(b) $2R\sin\theta$	(c) $R\sin\theta/2$	(d) $R\sin\theta$
► E	asic level	Problems based on	speed and velocity	
► E 7.	Casic level The ratio of the numerical v	Problems based on	speed and velocity werage speed of a body is always	[MP PET 2002]
► E 7.	Casic level The ratio of the numerical v (a) Unity	Problems based on alues of the average velocity and a (b) Unity or less	speed and velocity werage speed of a body is always (c) Unity or more	[MP PET 2002] (d) Less than unity
 E 7. 8. 	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second	speed and velocity werage speed of a body is always (c) Unity or more s. The velocity of the particle is	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001]
 E E 7. 8. 	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi ms^{-1}$	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$	speed and velocity we rage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 ms^{-1}$	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) 4 ms ⁻¹
► E 7. 8. 9.	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi m s^{-1}$ A 150 <i>m</i> long train is movi <i>meters</i> is	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$ ng with a uniform velocity of 45	speed and velocity we rage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 ms^{-1}$ <i>km/h</i> . The time taken by the tra	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) $4 ms^{-1}$ ain to cross a bridge of length 850
► E 7. 8. 9.	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi m s^{-1}$ A 150 m long train is movie meters is	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$ ng with a uniform velocity of 45	speed and velocity werage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 m s^{-1}$ <i>km/h</i> . The time taken by the tra	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) $4 ms^{-1}$ ain to cross a bridge of length 850 [CBSE PMT 2001]
 E 7. 8. 9. 	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi m s^{-1}$ A 150 <i>m</i> long train is movi <i>meters</i> is (a) 56 sec	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$ ng with a uniform velocity of 45 (b) 68 sec	speed and velocity werage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 ms^{-1}$ km/h. The time taken by the tra (c) 80 sec	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) 4 ms ⁻¹ (d) 4 ms ⁻¹ ain to cross a bridge of length 850 [CBSE PMT 2001] (d) 92 sec
 E 7. 8. 9. 10. 	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi ms^{-1}$ A 150 <i>m</i> long train is movi <i>meters</i> is (a) 56 sec A car moves for half of its the average speed of the car	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$ ng with a uniform velocity of 45 (b) 68 sec me at 80 km / h and for rest half of	speed and velocity werage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 m s^{-1}$ km/h. The time taken by the tra (c) 80 sec of time at 40 km/h. Total distance	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) $4 ms^{-1}$ and to cross a bridge of length 850 [CBSE PMT 2001] (d) 92 sec covered is 60 km. What is the [RPET 1996]
 E 7. 8. 9. 10. 	Easic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi ms^{-1}$ A 150 <i>m</i> long train is movi <i>meters</i> is (a) 56 sec A car moves for half of its the average speed of the car (a) 60 km/h	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$ ng with a uniform velocity of 45 (b) 68 sec me at 80 km/h and for rest half of (b) 80 km/h	speed and velocity we rage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 m s^{-1}$ km/h. The time taken by the tra (c) 80 sec of time at 40 km/h . Total distance (c) 120 km/h	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) $4 ms^{-1}$ and to cross a bridge of length 850 [CBSE PMT 2001] (d) 92 sec covered is 60 km. What is the [RPET 1996] (d) 180 km/h
 E 7. 8. 9. 10. 	Casic level The ratio of the numerical v (a) Unity A particle moves along a ser (a) $2\pi m s^{-1}$ A 150 <i>m</i> long train is movie <i>meters</i> is (a) 56 <i>sec</i> A car moves for half of its the average speed of the car (a) 60 <i>km</i> / <i>h</i>	Problems based on alues of the average velocity and a (b) Unity or less nicircle of radius 10 <i>m</i> in 5 second (b) $4\pi ms^{-1}$ ng with a uniform velocity of 45 (b) 68 sec me at 80 km/h and for rest half of (b) 80 km/h	speed and velocity werage speed of a body is always (c) Unity or more s. The velocity of the particle is (c) $2 m s^{-1}$ km/h. The time taken by the tra (c) 80 sec of time at 40 km/h . Total distance (c) 120 km/h	[MP PET 2002] (d) Less than unity [Kerala (Engg.) 2001] (d) 4 ms ⁻¹ (d) 4 ms ⁻¹ ain to cross a bridge of length 850 [CBSE PMT 2001] (d) 92 sec covered is 60 km. What is the [RPET 1996] (d) 180 km/h

CLICK HERE

(»

Motion in one dimension **119** A particle moves along x-axis in such a way that its coordinate x varies with time t according to the equation 11. $x = (2 - 5t + 6t^2)m$. The initial velocity of the particle is [MNR 1987; MP PET 1996] (a) -5 m/s(c) -3 m/s(b) 6 *m/s* (d) 3 m/sA car travels a distance of 2000 m. If the first half distance is covered at $40 \, km / hour$ and the second half with speed v and the 12. average speed is 48 km / hour, then the value of v is [CBSE PMT 1989] (a) 56 km / hour(b) 60 km / hour(c) $50 \, km \, / \, hour$ (d) 48 km / hourA car travels a distance S on a straight road in two hours and then returns to the starting point in the next three hours. Its 13. average velocity is (a) S/5(b) 2S/5(c) S/2 + S/3(d) None of the above When a particle moves with uniform velocity, which of the following relations are correct 14. (I) Average speed = average velocity (II) Instantaneous speed = instantaneous velocity (III) Distance covered = magnitude of displacement (b) I.II (c) II, III (d) I, III (a) I, II, III When a particle moves with variable velocity, which of the following statements are not correct 15. (I) Average speed = average velocity (II) Instantaneous speed = instantaneous velocity (III) Distance covered = magnitude of displacement (a) I, II, III (b) I, II (c) II, III (d) I, III A particle moves along the sides AB, BC, CD of a square of side 25 m with a velocity of 15 ms⁻¹. Its average velocity is 16. A (a) $15 m s^{-1}$ (c) $7.5 ms^{-1}$ (b) $10 m s^{-1}$ (d) $5 m s^{-1}$ A body has speed V, 2V and 3V in first 1/3 of distance S, seconds 1/3 of S and third 1/3 of S respectively. Its average speed will be 17. (c) $\frac{18}{11}V$ (d) $\frac{11}{18}V$ (a) V (b) 2V Advance level 18. A particle moving in a straight line covers half the distance with speed of 3 *m/s*. The other half of the distance is covered in two equal time intervals with speed of 4.5 m / s and 7.5 m / s respectively. The average speed of the particle during this motion is **[IIT-JEE 199**] (a) 4.0 m / s(b) 5.0 m / s(c) 5.5 m / s(d) 4.8 m / sIf the body covers one-third distance at speed v_1 , next one third at speed v_2 and last one third at speed v_3 , then average speed will 19. be (c) $\frac{v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1}$ (d) $\frac{3v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1}$ $\frac{v_1 v_2 + v_2 v_3 + v_3 v_1}{v_1 + v_2 + v_3}$ (b) $\frac{v_1 + v_2 + v_3}{3}$ (a) The displacement of the particle varies with time according to the relation $x = \frac{k}{h} [1 - e^{-bt}]$. Then the velocity of the particle is 20.

(a) $k(e^{-bt})$ (b) $\frac{k}{b^2 e^{-bt}}$ (c) $k b e^{-bt}$ (d) None of these

Get More Learning Materials Here :

🕀 www.studentbro.in

21. The displacement of a particle is given by $\sqrt{x} = t + 1$. Which of the following statements about its velocity is true (a) It is zero (b) It is constant but not zero (c) It increases with time (d) It decreases with time

Problems based on acceleration

Basic level

22.	A particle moves along a s when the acceleration is z	straight line such that its displaceme ero is	ent at any time <i>t</i> is given by	$S = t^3 - 6t^2 + 3t + 4$ metres .The velocity [CBSE PMT 1994; JIPMER 2001, 02]
	(a) $3 m s^{-1}$	(b) $-12 m s^{-1}$	(c) $42 m s^{-1}$	(d) $-9 m s^{-1}$
23.	A body is moving accord acceleration of the body is	ling to the equation $x = at + bt^2 - at$	ct^3 where $x =$ displacem	ent and <i>a</i> , <i>b</i> and <i>c</i> are constants. The [BHU 2000]
	(a) $a + 2bt$	(b) $2b + 6ct$	(c) $2b - 6ct$	(d) $3b - 6ct^2$
24.	The displacement is given	h by $x = 2t^2 + t + 5$, the acceleration a	at $t = 2s$ is	[EAMCET (Engg.)1995]
	(a) $4m/s^2$	(b) $8m/s^2$	(c) 10 m / s^2	(d) $15 m / s^2$
25.	The velocity of a body dep	ends on time according to the equat	tion $v = 20 + 0.1t^2$. The bod	ly is undergoing
				[MNR 1995; UPSEAT 2000]
	(a) Uniform acceleration	(b) Uniform retardation	(c) Non-uniform acce	eleration (d) Zero acceleration
26.	The displacement of a boo is	ly is given to be proportional to the	cube of time elapsed. The	magnitude of the acceleration of the body
				[NCERT 1990]
	(a) Increasing with time	(b) Decreasing with time	(c) Constant but not	zero (d) Zero
27.	The correct statement fro	om the following is		[MP PET 1993]
	(a) A body having zero ve	elocity will not necessarily have zero	acceleration	
	(b) A body having zero ve	elocity will necessarily have zero acc	eleration	
	(c) A body having unifor	m speed can have only uniform acce	eleration	
	(d) A body having non-u	niform velocity will have zero accele	ration	
28.	A particle moves along a s when the acceleration bec	straight line such that its displaceme comes zero is	ent at any time <i>t</i> is given by	$s = t^3 - 3t^2 + 2$ meter. The displacement [MP PMT 2001]
	(a) o meter	(b) 2 meter	(c) 3 meter	(d) – 2 <i>meter</i>
29.	What is the angle between	n instantaneous displacement and ad	cceleration during the retar	rded motion
	(a) Zero	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{2}$	(d) <i>π</i>
	Advance level			
30.	The acceleration of a part this particle at a time <i>t</i> wil	icle starting from rest, varies with t ll be	ime according to the relati	ion $A = -a\omega^2 \sin\omega t$. The displacement of
	(a) $-\frac{1}{2}(a\omega^2\sin\omega t)t^2$	(b) $a\omega\sin\omega t$	(c) $a\omega\cos\omega t$	(d) $a\sin\omega t$
31.	If the velocity of a particle	e is (10 + $2t^2$) m/s , then the average a	acceleration of the particle	between $2s$ and $5s$ is
	(a) $2 m/s^2$	(b) $4 m/s^2$	(c) $12 m/s^2$	(d) 14 m/s^2

CLICK HERE

》

🕀 www.studentbro.in

Problems based on position time graph

Basic level

- 32. The displacement versus time graph for a body moving in a straight line in shown in figure. Which of the following regions represents the motion when no force is acting on the body [NCERT 1971]
 - (a) *ab*
 - (b) *bc*
 - (c) *cd*
 - (d) *de*
- **33.** A car dealcelerates at a constant rate during a period commencing at t = 0. Which of the displacement time graphs represents the displacement of the car

34. Which of the following can not be the distance time graph

35. Which of the following displacement time graphs is not possible

(c)

- **36.** The graph between the displacement *x* and time *t* for a particle moving in a straight line is shown in figure. During the interval *OA*, *AB*, *BC* and *CD*, the acceleration of the particle is **[CPMT 1986]**
 - OA AB BC CD
 - (a) + 0 + +
 - (b) 0 + 0 (c) + 0 - +
 - (d) o o
- **37.** The x-t graph in figure represents

🕀 www.studentbro.in

sents

CLICK HERE

>>

x

(d)

- (b) Velocity of the body continuously changing
- (c) Instantaneous velocity
- (d) The body travels with constant speed up to time t_1 and then stops

Problems based on velocity time graph

Basic level

38. An object is moving with a uniform acceleration which is parallel to its instantaneous direction of motion. The displacement (s) -velocity (v) graph of this object is [SCRA 1998; DCE 2000]

39. The variation of velocity of a particle with time moving along a straight line is illustrated in the following figure. The distance travelled by the particle in four seconds is

velocity (m/s)

30

20

10

0

1

2 3 4

Time in second

- (a) 60 m
- (b) 55 m
- (c) 25 m
- (d) 30 m

Ge

40. A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed in *t*, then the maximum velocity acquired by the car is

(a)
$$\left(\frac{\alpha^2 + \beta^2}{\alpha\beta}\right) t$$
 (b) $\left(\frac{\alpha^2 - \beta^2}{\alpha\beta}\right) t$ (c) $\frac{(\alpha + \beta)t}{\alpha\beta}$ (d) $\frac{\alpha\beta t}{\alpha + \beta}$

41. A rocket is projected vertically upwards, whose velocity-time graph is shown in fig. The maximum height reached by the rocket is

	(a) 1 km (b) 10 km (c) 20 km (d) 60 km		$(a) = \frac{1}{2} $	B 80 100 120 140 Time	
42.	In the above problem the m	ean velocity of rocket in reaching the	e maximum height will be		
	(a) 100 <i>m/s</i>	(b) 50 <i>m/s</i>	(c) 500 <i>m/s</i>	(d) 25/3 <i>m/s</i>	
43 .	In the above problem the ac	cceleration of rocket will be			
	(a) 50 m/s^2	(b) 100 <i>m/s</i> ²	(c) 500 m/s^2	(d) 250 <i>m/s</i> ²	
44.	A lift is going up. The variat	ion in the speed of the lift is as given	in the graph. What is height to	o which the lift takes the	passenger
	(a) 3.6 m (b) 28.8 m		6.0	(IIT-	JEE 1970]
t M	ore Learning Mat	erials Here : 👉 👊		🕀 www.stud	entbro.in

(c) 36.0 m

(d) Cannot be calculated from the above graph

- **45.** The figure shows the velocity of a particle plotted against time *t*
 - (a) The displacement of the particle is zero
 - (b) The particle changes its direction of motion at some point
 - (c) The initial and final speeds of the particle are same
 - (d) All of the above statements are correct
- **46.** The v-t plot of a moving object is shown in the figure. The average velocity of the object during the first 10 seconds is
 - (a) o
 - (b) 2.5 ms⁻¹
 - (c) $5 m s^{-1}$
 - (d) 2 ms⁻¹
- **47.** Which of the following velocity time graphs is possible.

Advance level

48. A particle starts from rest, accelerates at 2 m/s^2 for 10s and then goes for constant speed for 30s and then decelerates at 4 m/s^2 till it stops. What is the distance travelled by it **[DCE 2001; AIIMS 2002]**

(a) 750 m (b) 800 m

(d) 850 m

Time (sec)

10

Velocity____

0

t

Time

🕀 www.studentbro.in

49. The graph below shows the velocity versus time graph for a body

(c) 700 m

Which of the following graphs represents the corresponding acceleration versus time graphs

50. The acceleration-time graph for a body is shown in the following graph. Which of the following graphs would probably represent the velocity of the body plotted against time

CLICK HERE

»

Get More Learning Materials Here : **_**

5

5

O

Velocity (ms⁻¹)

51. A particle is moving in such a way that its displacement is related with time by the equation $x = (10 - 4t + 6t^2) m$. The diagram showing variation of velocity of particle with time is

🕀 www.studentbro.in

Basic level

A 1 A 1 A C - 7

52.	what will now be the veloc	ity of the body	1 100 N is applied on it for 10s is	n the same directio [MP PMT 200	n as its velocity, DO; RPET 2001]
	(a) 200 <i>m/s</i>	(b) 220 <i>m/s</i>	(c) 240 <i>m/s</i>	(d) 260 <i>m/s</i>	
53.	A particle is constrained to particle during this time is 3	move on a straight line path. It return 30 <i>m</i> . Which of the following statement	ns to the starting point after 10 <i>s</i> ts about the motion of the particle	ec. The total distance is false [CBSE PM]	e covered by the [2000; AFMC 2001]
	(a) Displacement of the p	particle is zero	(b) Average speed of the par	rticle is 3 <i>m/s</i>	
	(c) Displacement of the p	particle is 30 m	(d) Both (a) and (b)		
54 .	A constant force acts on a	body of mass 0.9 <i>kg</i> at rest for 10 <i>s</i> . If	f the body moves a distance of 2	50 <i>m</i> , the magnitud	le of the force is
				[EAMCE]	ſ (Engg.) 2000]
	(a) 3 <i>N</i>	(b) 3.5 <i>N</i>	(c) 4.0 <i>N</i>	(d) 4.5 <i>N</i>	
55.	Two cars A and B are at	rest at same point initially. If A sta	arts with uniform velocity of 4	o <i>m/sec</i> and <i>B</i> sta	rts in the same
	direction with constant ac	celeration of $4m/s^2$, then <i>B</i> will cate	ch A after how much time		[RPET 1999]
	(a) 10 sec	(b) 20 <i>sec</i>	(c) 30 <i>sec</i>	(d) 35 sec	
56.	If a train travelling at 72 k	<i>mph</i> to be brought to rest in distance	e of 200 <i>metres,</i> then its retarda	tion should be	[SCRA 1998]
	(a) 20 ms ⁻²	(b) 10 ms^{-2}	(c) $2 m s^{-2}$	(d) $1 ms^{-2}$	
5 7•	If a body starts from rest a	and travels 120 <i>cm</i> in the 6th second,	then what is the acceleration		[AFMC 1997]
	(a) 0.20 m/s^2	(b) 0.027 m / s^2	(c) 0.218 m/s^2	(d) $0.03 m / s^2$	
58.	A car moving with a speed speed of $80 km / h$, what is	of 40 km / h can be stopped by apply the minimum stopping distance	ing brakes after at least 2 <i>m</i> . If t [CBSE PMT 1998, 9	he same car is mov 9; AFMC 2000; JIF	ing with a 2 MER 2001, 02]
	(a) 8 m	(b) 2 <i>m</i>	(c) 4 m	(d) 6 m	
59.	A particle moving with a u velocity is	niform acceleration travels 24 m and	l 64 m in the first two consecutiv	ve intervals of 4 <i>sec</i>	each. Its initial [MP PET 1995]
	(a) $1 m / \sec$	(b) $10 m / sec$	(c) $5m / \sec$	(d) $2m / \sec$	

CLICK HERE

≫

🕀 www.studentbro.in

60.	• A particle moves along a straight line path. After some time it comes to rest. The motion is with constant acceleration whose direction with respect to the direction of velocity is								
	(a) Positive throughout me	otion	(b)	Negative throughout moti	on				
	(c) First positive then nega	ative	(d)	First negative then positiv	e				
61.	A bus is moving with a vel distance of 1 <i>km</i> from the sc	locity 10 ms^{-1} on a straight road. A spoterist, with what velocity should the	scoote he sco	erist wishes to overtake the oterist chase the bus	e bus in 100 s. If, the bus is at a				
	(a) $50 m s^{-1}$	(b) $40 ms^{-1}$	(c)	30 ms ⁻¹	(d) $20 ms^{-1}$				
62.	The velocity acquired by a initial velocity is	body moving with uniform acceler	ration	is $30 ms^{-1}$ in 2 seconds a	nd $60 m s^{-1}$ in four seconds. The				
	(a) $4 m s^{-1}$	(b) $0 m s^{-1}$	(c)	$2 ms^{-1}$	(d) $10 m s^{-1}$				
63.	An engine of a train movin velocity <i>v</i> . The middle poin	ng with uniform acceleration passes t of the train passes past the same po	s an e ole wit	lectric pole with velocity <i>u</i> th a velocity of	and the last compartment with				
	(a) $\sqrt{\frac{v^2 - u^2}{2}}$	(b) $\sqrt{\frac{v^2 + u^2}{2}}$	(c)	$\frac{u^2 + v^2}{2}$	(d) $\frac{u+v}{2}$				
64.	A uniformly accelerated bo and <i>Q</i> then speed of <i>O</i> will	dy passes two points <i>P</i> and <i>Q</i> with s be	speeds	s of 10 m/s and 20 m/s re	espectively. If O is mid-point of P				
	(a) 15.0 <i>m</i> / <i>s</i>	(b) 15.8 <i>m</i> / <i>s</i>	(c)	16.5 <i>m</i> / <i>s</i>	(d) 14.2 <i>m</i> / <i>s</i>				
65.	A particle starts from rest second. The ratio $x_1 / x_2 =$	and moving with constant accelera	ation	covers a distance x_1 in th	e 3rd second and x_2 in the 5th				
	(a) 3/5	(b) 5/9	(c)	9/25	(d) 25/81				
66.	 A particle starts moving along a straight line path with a velocity 10 ms⁻¹. After 5 seconds, the distance of the particle from the starting point is 50 m. Which of the following statements about the nature of motion of the particle are correct? I. The motion may be with constant acceleration. II. The motion is continuously with constant velocity. III. The motion is continuously retarded IV. The motion may be first accelerated and then retarded 								
	(a) I, III	(b) II, IV	(c)	I, II	(d) III, IV				
67.	A bullet moving with a velo velocity is needed for travel	ocity of 200 <i>cm/s</i> penetrates a wood ling distance of 9 <i>cm</i> in same block	len bl	lock and comes to rest afte	r traversing 4 <i>cm</i> inside it. What				
	(a) 100 <i>cm/s</i>	(b) $136.2 \ cm \ / \ s$	(c)	300 <i>cm</i> / <i>s</i>	(d) 250 <i>cm/s</i>				
	• Advance level								
68.	A point moves with uniform	n acceleration and v_1, v_2 and v_3 deno	ote the	e average velocities in the th	aree successive intervals of time				
	t_1, t_2 and t_3 . Which of the f	following relations is correct			[NCERT 1982]				
	(a) $(v_1 - v_2): (v_2 - v_3) = (t_1)$	$(t_1 - t_2): (t_2 + t_3)$	(b)	$(v_1 - v_2): (v_2 - v_3) = (t_1 + t_2)$	t_2): $(t_2 + t_3)$				
	(c) $(v_1 - v_2): (v_2 - v_3) = (t_1 - v_2)$	$(t_1 - t_2): (t_1 - t_3)$	(d)	$(v_1 - v_2): (v_2 - v_3) = (t_1 - t_1)$	t_2): $(t_2 - t_3)$				

69. A body is moving from rest under constant acceleration and let S_1 be the displacement in the first (p-1) sec and S_2 be the

displacement in the first *p* sec. The displacement in $(p^2 - p + 1)^{th}$ sec will be

- (a) $S_1 + S_2$ (b) $S_1 S_2$ (c) $S_1 S_2$ (d) S_1 / S_2
- **70.** A thief is running away on a straight road in jeep moving with a speed of $9 ms^{-1}$. A police man chases him on a motor cycle moving at a speed of $10 ms^{-1}$. If the instantaneous separation of the jeep from the motorcycle is 100 m, how long will it take for the police to catch the thief

CLICK HERE

≫

12	6 Motion in one dimen	sion					
	(a) 1 <i>s</i>	(b) 19 <i>s</i>	(c) 90 s	(d) 100 <i>s</i>			
71.	A car A is travelling on	a straight level road with a un	niform speed of $60 km / h$. It is follo	wed by another car B which is moving			
	with a speed of 70 km / much time will <i>B</i> catch u	<i>h</i> . When the distance between up with <i>A</i>	them is 2.5 km , the car B is given	a deceleration of $20 km/h^2$. After how			
	(a) 1 <i>hr</i>	(b) $1/2 hr$	(c) $1/4 hr$	(d) 1/8 hr			
72.	Two cars <i>A</i> and <i>B</i> are t ahead of the car <i>B</i> , the d	ravelling in the same the direct river of the car A applies the bu	tion with velocities v_1 and $v_2(v_1 > a ke producing a uniform retardation$	v_2). When the car A is at a distance <i>d</i> n a there will be no collision when			
	(a) $d < \frac{(v_1 - v_2)^2}{2a}$	(b) $d < \frac{(v_1^2 - v_2^2)}{2a}$	(c) $d > \frac{(v_1 - v_2)^2}{2a}$	(d) $d > \frac{v_1^2 - v_2^2}{2a}$			
73.	The displacement <i>x</i> of a by the body in 4 th second	particle in time <i>t</i> is given by 10 d of motion	$0t^2 - 4t - x = 0$. Where x is in metro	e and t in second. The distance covered			
	(a) 31 <i>m</i>	(b) 39.5 <i>m</i>	(c) 66 m	(d) 75 m			
74.	The speed of a body mo additional distance <i>S</i> , its	ving with uniform acceleration s speed would become	is <i>u</i> . This speed is doubled while co	overing a distance <i>S</i> . When it covers an			
	(a) $\sqrt{3} u$	(b) $\sqrt{5} u$	(c) $\sqrt{11} u$	(d) $\sqrt{7} u$			
7 5 .	Two trains one of lengt	h 100 m and another of lengt	h 125 <i>m</i> , are moving in mutually o	pposite directions along parallel lines,			
	meet each other, each w pass each other will be	ith speed 10 m / s . If their accel	leration are 0.3 m/s^2 and 0.2 m/s^2	respectively, then the time they take to			
	(a) 5 <i>s</i>	(b) 10 <i>s</i>	(c) 15 <i>s</i>	(d) 20 <i>s</i>			
76.	If the distances covered by an accelerated body during the l^{th} , m^{th} and n^{th} seconds are a , b and c respectively, then the correct relation is						
	(a) $a(m-n)+b(n-l)+$	$c\left(l-m\right)=0$	(b) $l(b+c)+m(c+a)+m(a$	a(a+b) = 0			
	(c) $al+bm+cn=0$		(d) None of these is true	2			
77.	Two trains, one travelling at 90 m/s and the other travelling at 120 m/s, are moving towards each other on the same track. When						
	they are 11 km apart, bo	th drivers simultaneously appl	y brakes. If the brakes decelerate ea	sch train at the rate of 3 m/s^2 , then the			
	distance travelled by the	e first train is.					
	(a) 1350 m	(b) 2400 m	(c) 4740 m	(d) 8870 m			
7 8.	In the above problem, th	ie distance travelled by the second	ond train is				
	(a) $1350 m$	(b) $2400 m$	(c) 3740 m	(d) 8870 m			
7 9 .	In the above problem wi	nether a conision will take plac	e or not	11:-:			
	(a) Collision will take p	nace	(d) None of these	llision			
80	(c) Comsion may not ta	ike place	(u) None of these	to displacement in the last two seconds			
00.	is		s velocity after it second is <i>D</i> , then i	is displacement in the last two seconds			
	(a) $\frac{2\upsilon(n+1)}{n}$	(b) $\frac{\nu(n+1)}{n}$	(c) $\frac{\nu(n-1)}{n}$	(d) $\frac{2\nu(n-1)}{n}$			
81.	Two particles move in a	straight line towards each othe	er with initial velocities v_1 and v_2	and retardation a_1 and a_2 towards each			
	other. The maximum ini	itial separation between the two	o particles so that they may meet m	ıst be			
	(a) $\frac{(v_1 + v_2)}{2(a_1 + a_2)}$	(b) $\frac{(v_1 + v_2)^2}{2(a_1 + a_2)}$	(c) $\frac{(v_1 + v_2)}{2a_1 a_2}$	(d) $\frac{(v_1 + v_2)}{2(a_1 + a_2)^2}$			

82. A point starts moving in a straight line with a certain acceleration. At a time *t* after beginning of motion the acceleration suddenly becomes retardation of the same value. The time in which the point returns to the initial point is

Get More Learning Materials Here : 📕

 (a) √2t (b) (2+√2)t (c) t/√2 (d) Cannot be predicted unless acceleration is given 83. A particle is moving in a straight line and passes through a point O with a velocity of 6 ms⁻¹. The particle moves with retardation of 2 ms⁻² for 4 s and there after moves with constant velocity. How long after leaving O does the partic O (a) 3s (b) 8s (c) Never (d) 4s 84. A bird flies for 4 s with a velocity of t - 2 m/s in a straight line, where t = time it seconds. It covers a distance of (a) 2m (b) 4m (c) 6m (d) 8m Problems based on equation of kinematics (variable acceleration) ▶ Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4m/s². The distance covered is 	n h a constant cle return to 1 by it in 3 s
 (c) t/√2 (d) Cannot be predicted unless acceleration is given 83. A particle is moving in a straight line and passes through a point O with a velocity of 6 ms⁻¹. The particle moves with retardation of 2 ms⁻² for 4 s and there after moves with constant velocity. How long after leaving O does the partice O (a) 3s (b) 8s (c) Never (d) 4s 84. A bird flies for 4 s with a velocity of t - 2 m/s in a straight line, where t = time it seconds. It covers a distance of (a) 2 m (b) 4 m (c) 6 m (d) 8 m Problems based on equation of kinematics (variable acceleration) Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4m/s ² . The distance covered is	n h a constant cle return to d by it in 3 <i>s</i>
 83. A particle is moving in a straight line and passes through a point O with a velocity of 6 ms⁻¹. The particle moves with retardation of 2 ms⁻² for 4 s and there after moves with constant velocity. How long after leaving O does the particle O (a) 3s (b) 8s (c) Never (d) 4s 84. A bird flies for 4 s with a velocity of t - 2 m/s in a straight line, where t = time it seconds. It covers a distance of (a) 2m (b) 4m (c) 6m (d) 8m Problems based on equation of kinematics (variable acceleration) ▶ Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4m/s². The distance covered is 	h a constant cle return to d by it in 3 <i>s</i>
retardation of $2 m s^{-2}$ for 4 s and there after moves with constant velocity. How long after leaving O does the partic O (a) $3s$ (b) $8s$ (c) Never (d) $4s$ 84. A bird flies for 4 s with a velocity of $ t-2 m/s$ in a straight line, where $t =$ time it seconds. It covers a distance of (a) $2m$ (b) $4m$ (c) $6m$ (d) $8m$ Problems based on equation of kinematics (variable acceleration) Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration $a = 6t + 4m/s^2$. The distance covered is	cle return to 1 by it in 3 <i>s</i>
(a) $3s$ (b) $8s$ (c) Never (d) $4s$ 84. A bird flies for 4 s with a velocity of $ t-2 m/s$ in a straight line, where $t = time$ it seconds. It covers a distance of (a) $2m$ (b) $4m$ (c) $6m$ (d) $8m$ Problems based on equation of kinematics (variable acceleration) Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration $a = 6t + 4m/s^2$. The distance covered is	1 by it in 3 <i>s</i>
 84. A bird flies for 4 s with a velocity of t − 2 m/s in a straight line, where t = time it seconds. It covers a distance of (a) 2 m (b) 4 m (c) 6 m (d) 8 m Problems based on equation of kinematics (variable acceleration) ▶ Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4m/s². The distance covered is 	1 by it in 3 <i>s</i>
 (a) 2 m (b) 4 m (c) 6 m (d) 8 m Problems based on equation of kinematics (variable acceleration) ▶ Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4 m/s². The distance covered is 	1 by it in 3 <i>s</i>
 Problems based on equation of kinematics (variable acceleration) ▶ Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4m/s². The distance covered is 	1 by it in 3 <i>s</i>
 Basic level 85. A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4m/s². The distance covered is 	d by it in 3 <i>s</i>
85. A particle, initially at rest, starts moving in a straight line with an acceleration $a = 6t + 4m/s^2$. The distance covered is	d by it in 3 <i>s</i>
(a) 30 m (b) 60 m (c) 45 m (d) 15 m	
86. The Initial velocity of a particle is u (at $t = 0$) and the acceleration f is given by $a t$. Which of the following relation is v	valid
(a) $v = u + at^2$ (b) $v = u + a\frac{t^2}{2}$ (c) $v = u + at$ (d) $v = u$	
Advance level	
87. The velocity of a particle is dependent on the time as $v = k(t-1)$ where $k = 2 \text{ m/s}^2$. the distance covered in first three s be	seconds will
(a) $18 m$ (b) $5 m$ (c) $3 m$ (d) $6 m$	
88. A particle is projected with velocity v_0 along $x - axis$. The deceleration on the particle is proportional to the so	quare of the
distance from the origin i.e., $a = \alpha x^2$. The distance at which the particle stops is	
(a) $\sqrt{\frac{3v_0}{2\alpha}}$ (b) $\left(\frac{3v_o}{2\alpha}\right)^{\frac{1}{3}}$ (c) $\sqrt{\frac{3v_0^2}{2\alpha}}$ (d) $\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$	
Problems based on motion under gravity	
Basic level	
89. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a he $2m$ on the surface of A. What is the height of jump by the same person on the planet B [CBSE]	eight of [PMT 2003]
(a) $18m$ (b) $6m$ (c) $\frac{2}{3}m$ (d) $\frac{2}{9}m$	
90. Two balls are dropped from heights <i>h</i> and <i>2h</i> respectively from the earth surface. The ratio of time of these balls to rea earth is	ach the
$\begin{bmatrix} c \\ c \end{bmatrix} = \frac{1}{2} \begin{bmatrix} c $	/FM1 2003]
(a) $1:\sqrt{2}$ (b) $\sqrt{2}:1$ (c) $2:1$ (d) $1:4$	

91.	A body falling from a high Minaret travels 40 meters in the last 2 seconds of its fall to ground. Height of Minaret in meters is						
	(take $g = 10 m / s^2$) [MP PMT 2002						
	(a) 60	(b) 45	(c) 80	(d) 50			
92.	A cricket ball is thrown up w	with a speed of 19.6 ms^{-1} . The maxim	um height it can reach is	[Kerala PMT 20	002]		
	(a) 9.8 <i>m</i>	(b) 19.6 <i>m</i>	(c) 29.4 <i>m</i>	(d) 39.2 m			
93.	A ball is dropped from top o	of a tower of 100 <i>m</i> height. Simultane	ously another ball was thrown u	pward from bottom of the tow	wer		
	with a speed of 50 m/s (g =	$= 10 m / s^2$). They will cross each oth	er after				
	(a) 1 <i>s</i>	(b) 2 <i>s</i>	(c) 3 <i>s</i>	(d) 4 <i>s</i>			
94 .	From the top of a tower, a p it in the 3 rd and 2 nd seconds	particle is thrown vertically down was of the motion is (Take $g = 10 m/s^2$)	rds with a velocity of 10 m/s . Th	e ratio of the distances covere [AIIMS 2000; CBSE PMT 2	ed by 2002]		
	(a) 5: 7	(b) 7:5	(c) 3:6	(d) 6:3			
95.	Three different objects of m	asses m_1, m_2 and m_3 are allowed	to fall from rest and from the sa	me point 'O' along three diffe	erent		
	frictionless paths. The speed	ds of the three objects, on reaching th	he ground, will be in the ratio of	[AIIMS 20	002]		
	(a)	(b)	(a) 1 · 1 · 1	(d) $1, 1, 1$			
	(a) $m_1:m_2:m_3$	(b) $m_1 : 2m_2 : 5m_3$	(0)1.1.1	(u) $\frac{1}{m_1} \cdot \frac{1}{m_2} \cdot \frac{1}{m_3}$			
96.	A particle when thrown, mo	oves such that it passes from same he	eight at 2 and 10s, the height is	[UPSEAT 2	2001]		
	(a) <i>g</i>	(b) 2 <i>g</i>	(c) $5g$	(d) 8 g			
97.	A man throws a ball vertical	lly upward and it rises through 20 m	n and returns to his hands. What	t was the initial velocity (u) o	of the		
	ball and for how much time	(T) it remains in the air $[g = 10m / s]$	²]				
	(a) $u = 10 \text{ m/s} T = 2 \text{ s}$	(b) $y = 10 m/s T = 4s$	(c) u = 20 m/s T = 2s	(d) $u = 20 m/s T = 4s$			
08	(a) $u = 10 m/3, 1 = 25$	(b) $u = 10 m/s$, $1 = 45$	(c) $u = 20 m/s$, $1 = 25$	(u) $u = 20 m/3$, $1 = 43$	tono		
90.	will ($g = 10 \ m/s^2$)	the ground with an acceleration of	$1.25 m/s^2$ after $0s$, a stone is refe	[KCET (Engg.) 2	001		
	(a) Reach the ground in 4 s	second	(b)	Begin to move down after b	being		
	released						
	(c) Have a displacement of	$f_{50}m$	(d) Cover a distance of $40 m$	in reaching the ground			
99.	A body thrown vertically up travelled by the body in the	first second and the seventh second	eaches maximum height in 6 se	conds. The ratio of the dista [EAMCET (Engg.) 20	ances		
	(a) 1:1	(b) 11:1	(c) 1:2	(d) 1:11	-		
100.	Time taken by an object to r	reach the height of h_1 and h_2 is resp	pectively t_1 and t_2 then the rational sector t_1 and t_2 then the rational sector t_2 and t_3 and t_4 and t_5 and t_6 and t_8 and t_8 and t_8 and t_8 and t_8 and t_8 and t_8 and t_8	o of t_1 to t_2 is [RPMT 1	999]		
	(a) $h \cdot h$	(b) $\sqrt{h} \cdot \sqrt{h}$	(a) $h \cdot 2h$	$(d) \circ h \cdot h$			
	(a) $n_1 \cdot n_2$	(b) $\sqrt{n_1} \cdot \sqrt{n_2}$	(c) $n_1 \cdot 2n_2$	(u) $2n_1 \cdot n_2$			
101.	The time taken by a block (20^{9}) is	of wood (initially at rest) to slide d	own a smooth inclined plane 9	.8 m long (angle of inclination)	on 1s		
	30°) IS			LIIPMER 1	000]		
	. 1				9991		
	(a) $\frac{1}{2}$ sec	(b) 2 <i>sec</i>	(c) 4 <i>sec</i>	(d) 1 <i>sec</i>			
102.	A stone is thrown with an in The height of the bridge is	nitial speed of 4.9 m/s from a bridge	e in vertically upward direction.	It falls down in water after 2 [AFMC 1	2 sec. 999]		
	(a) 4.9 <i>m</i>	(b) 9.8 m	(c) 19.8 <i>m</i>	(d) 24.7 <i>m</i>			
103.	A ball is dropped downwar between them after 3 second	rds. After 1 second another ball is o ds	dropped downwards from the s	same point. What is the dist	ance		
	(a) 25 m	(b) 20 m	(c) 50 m	(d) 9.8 m			
104.	A body dropped from a heig	ght <i>h</i> with an initial speed zero, strik	es the ground with a velocity 3 k	m / h. Another body of same i	mass		
	is dropped from the same h	height h with an initial speed $-u'=4$	km/h. Find the final velocity of	second body with which it st	rikes		
	the ground			[CBSE PMT 1996; KCET 20	002]		

Regional www.studentbro.in

112. A body is released from the top of a tower of height h. It takes t sec to reach the ground. Where will be the ball after time $t/2 \sec t$

CLICK HERE

(a) At h/2 from the ground

(b) At h/4 from the ground

[NCERT 1981]

🕀 www.studentbro.in

130 Motion in one dimension (c) Depends upon mass and volume of the body (d) At 3h/4 from the ground 113. A body is thrown vertically upwards. If air resistance is to be taken into account, then the time during which the body rises is [RPET 2000; KCET (Engg./Med.) 2001; DPMT 2001] (a) Equal to the time of fall (b) Less than the time of fall (c) Greater than the time of fall (d) Twice the time of fall A body falls freely from rest. It covers as much distance in the last second of its motion as covered in the first three seconds. The 114. body has fallen for a time of [MNR 1998] (a) 3 s (b) 5 s (c) 7 s (d) 9s A ball is dropped on the floor from a height of 10 m. It rebounds to a height 2.5 m. If the ball is in contact with the floor for 0.01 115. sec, the average acceleration during contact is [BHU 1997; CPMT 1997] (b) $2100 m / \sec^2$ upwards (a) $2100 m / \sec^2$ downwards (d) $700 m / \sec^2$ (c) $1400 m / \sec^2$ **116.** Two particles one 0.98 *m* vertically above the other are released simultaneously. They fall under gravity ($g = 9.8 m/s^2$). The separation between the two particles after 2 s will be (c) 0.98 m (a) 0.49 m (b) 4.9 m (d) 19.6 m 117. Two balls are dropped from different heights. One ball is dropped 2 sec after the other ball. If both balls reach the ground simultaneously after 5 sec of dropping the first ball the difference of initial heights of the two balls will be $(g = 9.8 \, m \, / \, s^2)$ (b) 78.4 m (c) 98 m (d) 117.6 m (a) 58.8 v **118.** A balloon is moving upwards with a constant velocity of 5 m / s. A stone is dropped from it. If at the moment of dropping the stone the balloon is at height of 50 m, then when the stone will hit the ground, at that time the height of the balloon will be $(g = 10 m / s^2)$ (a) 68.3 m (b) 63.5 m (c) 75.5 m (d) 88.7 m **119.** A stone thrown upwards with a velocity u reaches up to a height h. If the initial velocity is 2u the height attained would be (a) 2h(b) 4 h (c) 8 h (d) 16 h 120. A person throws balls into the air one after the other at an interval of one second. The next ball is thrown when the velocity of the ball thrown earlier is zero. To what height the ball rise (Take $g = 10 m / s^{-2}$) (a) 5 m (b) 10 m (c) 25 m (d) 40 m **121.** A body is projected vertically up with a velocity v and after some time it returns to the point from which it was projected. The average velocity and average speed of the body for the total time of flight are (a) $\vec{v}/2$ and v/2(b) o and v/2(c) o and o (d) $\vec{v}/2$ and o 122. Two balls A and B are simultaneously thrown. A is thrown from ground level with a velocity of 20 ms^{-1} in the upward direction and B is thrown from a height of 40 m in the downward direction with same velocity. Where will the two balls meet (c) 35 m (a) 15 m (b) 25 m(d) 45 m A stone is dropped from a height h. Simultaneously, another stone is thrown up from the ground which reaches a height 4 h. The 123. two stones cross each other after time (d) $\sqrt{\frac{h}{2g}}$ (a) $\sqrt{\frac{h}{8g}}$ (b) $\sqrt{8gh}$ (c) $\sqrt{2gh}$ A body is released from a height towards the ground level. Just after one second another body is released from same height. The 124. distance between two bodies just after two seconds after the release of second body will be (a) 4.9 m (b) 9.8 m (c) 19.6 m (d) 24.5 m A stone falls from the top of the tower in 8 sec. How much time will it take to cover the first quarter of the distance starting from 125. the top (a) 4 sec (b) 2 sec (c) 1 sec (d) None of these **126.** Three particles A, B and C are thrown from the top of a tower with the same speed. A is thrown straight up, B is thrown straight down and C is thrown horizontally. They hit the ground with speeds v_A , v_B and v_C respectively, then

Get More Learning Materials Here :

🕀 www.studentbro.in

(a)
$$v_A = v_B = v_C$$
 (b) $v_A > v_B > v_C$ (c) $v_A = v_B > v_C$ (d) $v_A > v_B = v_C$

Advance level

- **127.** Four marbles are dropped from the top of a tower one after the other with an interval of one second. The first one reaches the ground after 4 *seconds*. When the first one reaches the ground the distances between the first and second, the second and third and the third and forth will be respectively
 - (a) 35, 25 and 15 m (b) 30, 20 and 10 m (c) 20, 10 and 5 m (d) 40, 30 and 20 m
- **128.** A ball is dropped from the top of the tower of height *h*. It covers a distance of h/2 in the last second of its motion. How long does the ball remain in air (Take $g = 10 \text{ ms}^{-2}$)

(a)
$$\sqrt{2} s$$
 (b) $(2 + \sqrt{2}) s$ (c) $2 s$ (d) None of the above

129. A body is dropped form height *h*. If t_1 and t_2 be the times in covering first half and next half distances respectively, then the correct relation is

(a)
$$t_1 = t_2$$
 (b) $t_1 = 2t_2$ (c) $t_1 = \frac{t_2}{\sqrt{2} - 1}$ (d) $t_1 = 4t_2$

- **130.** A balloon rises from rest with a constant acceleration g/8. A stone is released from it when it has risen to height *h*. The time taken by the stone to reach the ground is
 - (a) $4\sqrt{\frac{h}{g}}$ (b) $2\sqrt{\frac{h}{g}}$ (c) $\sqrt{\frac{2h}{g}}$ (d) $\sqrt{\frac{g}{h}}$
- **131.** A ball is projected upwards from a height h above the surface of the earth with velocity v. The time at which the ball strikes the ground is

(a)
$$\frac{v}{g} + \frac{2hg}{\sqrt{2}}$$
 (b) $\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}} \right]$ (c) $\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$ (d) $\frac{v}{g} \left[1 + \sqrt{v^2 + \frac{2g}{h}} \right]$

132. Two bodies are thrown simultaneously from a tower with same initial velocity v_0 : one vertically upwards, the other vertically downwards. The distance between the two bodies after time *t* is

(a)
$$2v_0t + \frac{1}{2}gt^2$$
 (b) $2v_0t$ (c) $v_0t + \frac{1}{2}gt^2$ (d) v_0t

- **133.** A body falls freely from the top of a tower. It covers 36% of the total height in the last second before striking the ground level. The height of the tower is
 - (a) 50 m (b) 75 m (c) 100 m (d) 125 m
- **134.** A particle is projected upwards. The times corresponding to height h while ascending and while descending are t_1 and t_2 respectively. The velocity of projection will be

(a)
$$gt_1$$
 (b) gt_2 (c) $g(t_1 + t_2)$ (d) $\frac{g(t_1 + t_2)}{2}$

- **135.** A projectile is fired vertically upwards with an initial velocity u. After an interval of T seconds a second projectile is fired vertically upwards, also with initial velocity u.
 - (a) They meet at time $t = \frac{u}{g}$ and at a height $\frac{u^2}{2g} + \frac{gT^2}{8}$ (b) They meet at time $t = \frac{u}{g} + \frac{T}{2}$ and at a height $\frac{u^2}{2g} + \frac{gT^2}{8}$
 - (c) They meet at time $t = \frac{u}{g} + \frac{T}{2}$ and at a height $\frac{u^2}{2g} \frac{gT^2}{8}$ (d) They never meet

🕀 www.studentbro.in

Answer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
а	b	с	d	а	а	b	d	с	а
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
а	b	d	а	d	d	с	а	d	а
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
с	d	с	а	с	а	а	а	d	d
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
d	b	d	b	а	b	d	с	b	d
41.	42.	43∙	44.	45 .	46.	47•	48.	49.	50.
d	с	а	с	d	а	с	а	b	d
51.	52.	53.	54 .	55.	56.	57.	58.	59.	60.
а	b	с	d	b	d	с	а	а	b
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
d	b	b	b	b	b	с	b	а	d
71.	72.	7 3 •	74.	75.	76.	77•	7 8.	79 •	80.
b	с	с	d	b	а	а	b	b	d
81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
b	b	b	b	с	b	с	d	d	а
91.	92.	93.	94.	95.	96.	97.	98.	99.	100.
b	b	b	b	с	d	d	а	b	b
101.	102.	103.	104.	105.	106.	107.	108.	109.	110.
b	b	а	с	b	b	с	а	а	с
111.	112.	113.	114.	115.	116.	117.	118.	119.	120.
с	d	b	b	b	с	b	а	b	а
121.	122.	123.	124.	125.	126.	127.	128.	129.	130.
b	a	а	d	b	с	а	b	с	b
131.	132.	133.	134.	135.					
c	b	d	d	с					

